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We heat and backlight FeMg foil using dynamic hohlraum and measure - Sanda
Fe opacity at 7,=150-200 eV and n_=7-40x10%! cm-3

Laboratories

T,=160eV, n, = 7x10?" cm-3 T,=195 eV, n, = 40x10%" cm™3
2.0
= Data = 0| Data
L 15[ PrismSPECT T PrismSPECT
5 §
0 s .
12 8 9 10 1 12

Wavelength [A] Wavelength [A]

* How does the experiment work?
e What do we know from measurements?

e What do we know from simulations?

e What are the limitations?
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ZPDH opacity science platform satisfies challenging requirements
for reliable opacity measurements

Requirements:

* Heat Fe to uniform conditions
- Powerful ZPDH radiation
* Measure Fe conditions independently
- Mg K-shell spectroscopy
* Deal with Fe self-emission
—> 350 eV Planckian at stagnation
* Measure transmission spectra accurately

Z-pinch dvnamic hohlraum - Convex KAP spectrometer with x-ray films

Sandia
National
Laboratories




ZPDH opacity science platform satisfies challenging requirements
for reliable opacity measurements

Requirements:

* Heat Fe to uniform conditions
- Powerful ZPDH radiation
* Measure Fe conditions independently
- Mg K-shell spectroscopy
* Deal with Fe self-emission
—> 350 eV Planckian at stagnation
* Measure transmission spectra accurately

Z-pinch dvnamic hohlraum - Convex KAP spectrometer with x-ray films

Sandia
National
Laboratories




ZPDH opacity science platform satisfies challenging requirements
for reliable opacity measurements

Requirements:

* Heat Fe to uniform conditions
- Powerful ZPDH radiation
* Measure Fe conditions independently
- Mg K-shell spectroscopy
* Deal with Fe self-emission
—> 350 eV Planckian at stagnation
* Measure transmission spectra accurately

Z-pinch dvnamic hohlraum - Convex KAP spectrometer with x-ray films

Sandia
National
Laboratories




ZPDH opacity science platform satisfies challenging requirements
for reliable opacity measurements

Requirements:

Half-moon
sample CH * Heat Fe to uniform conditions
- Powerful ZPDH radiation

* Measure Fe conditions independently
- Mg K-shell spectroscopy
* Deal with Fe self-emission
—> 350 eV Planckian at stagnation
* Measure transmission spectra accurately

Z-pinch dvnamic hohlraum - Convex KAP spectrometer with x-ray films

Sandia
National
Laboratories




ZPDH opacity science platform satisfies challenging requirements
for reliable opacity measurements

[ Cross-sectional view
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ZPDH opacity science platform satisfies challenging requirements
for reliable opacity measurements
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ZPDH opacity science platform satisfies challenging requirements
for reliable opacity measurements
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ZPDH opacity science platform satisfies challenging requirements
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Requirements:

Half-moon \
sample CH * Heat Fe to uniform conditions
—> Powerful ZPDH radiation
* Measure Fe conditions independently
- Mg K-shell spectroscopy
* Deal with Fe self-emission
—> 350 eV Planckian at stagnation

* Measure transmission spectra accurately
Z-pinch dvnamic hohlraum - Convex KAP spectrometer with x-ray films




(a) Experiments
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Measurements

* Te and ne of FeMg plasmas

e Source-to-sample distance

* Radiation characterization (old)
« XRD
e MLM



Measurements

* Te and ne of FeMg plasmas



Mg K-shell spectra are mixed in with the iron to i) Retoras
determine the plasma conditions. Mg'o*
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Increasing the back-side tamper mass increases (i) &&,.
the sample temperature and density
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Measurements

« Te and ne of FeMg plasmas

« Source-to-sample distance

» Radiation characterization (old)
« XRD
« MLM
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Source-to-sample distance is measured by parallax of 2=9° measurement$m,

top view
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“Half-moon” FeMg
is sandwiched by
“full-moon” plastic, CH
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Source-to-sample distance is measured by parallax of 2=9° measurement§)

Fe L-shell lines
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There is a strong anti-correlation between source-to-sample distance and@' Sandia
inferred T,
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There is a strong anti-correlation between source-to-sample distance and@| Sandia
inferred T,
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Measurements

« Te and ne of FeMg plasmas

» Source-to-sample distance

- Radiation characterization (old) | Will be discussed
« XRD . together with
- MLM simulation




Source backlighter and sample dynamics influence the
detected signals
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Heating radiation: F,(t)

Plasma evolution: T(z, t), n.(z, t)
Backlighter radiation: B (t)
Radiation transport
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Source backlighter and sample dynamics influence the

detected signals
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Source backlighter and sample dynamics influence the

detected signals
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Source backlighter and sample dynamics influence the

detected signals
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Source backlighter and sample dynamics influence the
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Source backlighter and sample dynamics influence the
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» Heating radiation: F,(t)

« Plasma evolution: T (z, t), n.(z, t)
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Simulation bridges static-uniform picture of data and
dynamic-gradient picture of reality

Z-axis
AN
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A Simulating our measurements

-9° 1 +9°

Heating radiation

+ Gated ZPDH pinhole images
« 3D view factor code (VISRAD)

Sample/tamper hydrodynamics
« 1D Lagrangian hydrodynamics code (HELIOS)

Backlighter radiation
+ Gated ZPDH pinhole images
* Integrate over detector-observable area

Radiation transport

 PrismSPECT LTE emissivity and opacity database
* Numerically integrate radiation transport equation

Z-pinch dynamic hohlraum




Drive radiation is modeled with VISRAD using pinhole images ;) s,
calibrated with XRD power measurements
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Drive radiation is modeled with VISRAD using pinhole imagesg; s

National
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calibrated with XRD power measurements

t=-3.1 1 t=-2.49 2
Limitations:
=04 6008 78 - Radiation of ZR is assumed to be a
o L] simple scale on the calibrated pinhole
images

- Radiation is modeled at the center of
the sample - Its lateral and axial
variation is neglected.

- In reality, source is not a disk but a 3D
plasma

10le images with XRD
ntric ZPDH source,
urrounding gold
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Hydro-simulation Details: i) fisios

= Free parameters:
= Scale factor to match the measured sample temperature (C=x2.6)
= Drive onset to match the measured sample density (t,=-1.0ns)

= Fix the lower boundary of the sample

= Helios - 1D Lagrangian code

= PROPACEOS for EOS and Opacity

= No inline geometrical dilution

= Disk for radiation source geometry

Same source and backlighter worked to simulate all experiments
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Spectral images are simulated by taking into account
instrumental geometry
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Spectral images are simulated by taking into account ) s,
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Spectral images are simulated by taking into account ) s,
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instrumental geometry
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Spectral images are simulated by taking into account ) s,
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Spectral images are simulated by taking into account ) s,
instrumental geometry
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Spectral images are simulated by taking into account ) i,
instrumental geometry
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Half-moon images are simulated by solving detailed ) s,
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radiation transport through the target gradient
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Are the discrepancies caused by the time- and space-
integration effects?
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1. Simulate our |, and I,
« FeMg and CH emission/attenuation
¢ To(zt), ny(zY)
« Backlighter time history, B, (t)
2. Analyze |,y and |, in the same way as the data
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Are the discrepancies caused by the time- and space- ot
integration effects?
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Are the discrepancies caused by the time- and space- ot
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